

DATABASE MANAGEMENT SYSTEM

UNIT-2

ER model
 ER model stands for an Entity-Relationship model. It is a high-level data model. This model

is used to define the data elements and relationship for a specified system.

 It develops a conceptual design for the database. It also develops a very simple and easy

to design view of data.

 In ER modeling, the database structure is portrayed as a diagram called an entity-

relationship diagram.

For example, suppose we design a school database. In this database, the student will be an entity

with attributes like address, name, id, age, etc. The address can be another entity with attributes

like city, street name, pin code, etc and there will be a relationship between them.

Component of ER Diagram

Entity:
An entity may be any object, class, person or place. In the ER diagram, an entity can be

represented as rectangles.

Consider an organization as an example- manager, product, employee, department etc. can be

taken as an entity.

Weak Entity:

An entity that depends on another entity called a weak entity. The weak entity doesn't contain

any key attribute of its own. The weak entity is represented by a double rectangle.

Attribute:
The attribute is used to describe the property of an entity. Eclipse is used to represent an

attribute.

For example, id, age, contact number, name, etc. can be attributes of a student.

1. Key Attribute

The key attribute is used to represent the main characteristics of an entity. It represents a primary

key. The key attribute is represented by an ellipse with the text underlined.

2. Composite Attribute

An attribute that composed of many other attributes is known as a composite attribute. The

composite attribute is represented by an ellipse, and those ellipses are connected with an ellipse.

3. Multivalued Attribute

An attribute can have more than one value. These attributes are known as a multivalued

attribute. The double oval is used to represent multivalued attribute.

For example, a student can have more than one phone number.

4. Derived Attribute

An attribute that can be derived from another attribute is known as a derived attribute. It can be

represented by a dashed ellipse.

For example, A person's age changes over time and can be derived from another attribute like

Date of birth.

Relationship
A relationship is used to describe the relation between entities. Diamond or rhombus is used to

represent the relationship.

Types of relationship:

1. One-to-One Relationship

When only one instance of an entity is associated with the relationship, then it is known as one-

to-one relationship.

For example, A female can marry to one male, and a male can marry to one female.

2. One-to-many relationship

When only one instance of the entity on the left, and more than one instance of an entity on the

right associates with the relationship then this is known as a one-to-many relationship.

For example, Scientist can invent many inventions, but the invention is done by the only specific

scientist.

3. Many-to-one relationship

When more than one instance of the entity on the left, and only one instance of an entity on the

right associates with the relationship then it is known as a many-to-one relationship.

For example, Student enrolls for only one course, but a course can have many students.

4. Many-to-many relationship

When more than one instance of the entity on the left, and more than one instance of an entity

on the right associates with the relationship then it is known as a many-to-many relationship.

For example, Employee can assign by many projects and project can have many employees.

ER-Diagram Notations:

ER diagram notations and symbols Similar to other diagram shapes, in ER diagrams entities are

represented with rectangles, attributes are represented by ovals or inside entities, and

relationships are shown in diamonds or with lines. There are six notation types, some more

common than others.

Mapping Constraints:
 A mapping constraint is a data constraint that expresses the number of entities to which

another entity can be related via a relationship set.

 It is most useful in describing the relationship sets that involve more than two entity sets.

 For binary relationship set R on an entity set A and B, there are four possible mapping

cardinalities. These are as follows:

5. One to one (1:1)

6. One to many (1:M)

7. Many to one (M:1)

8. Many to many (M:M)

One-to-one
In one-to-one mapping, an entity in E1 is associated with at most one entity in E2, and an entity

in E2 is associated with at most one entity in E1.

One-to-many
In one-to-many mapping, an entity in E1 is associated with any number of entities in E2, and an

entity in E2 is associated with at most one entity in E1.

Many-to-one
In one-to-many mapping, an entity in E1 is associated with at most one entity in E2, and an

entity in E2 is associated with any number of entities in E1.

Many-to-many
In many-to-many mapping, an entity in E1 is associated with any number of entities in E2, and

an entity in E2 is associated with any number of entities in E1.

Keys:
 Keys play an important role in the relational database.

 It is used to uniquely identify any record or row of data from the table. It is also used to

establish and identify relationships between tables.

For example, ID is used as a key in the Student table because it is unique for each student. In the

PERSON table, passport_number, license_number, SSN are keys since they are unique for each

person.

Types of keys:

1. Primary key
 It is the first key used to identify one and only one instance of an entity uniquely. An entity

can contain multiple keys, as we saw in the PERSON table. The key which is most suitable

from those lists becomes a primary key.

 In the EMPLOYEE table, ID can be the primary key since it is unique for each employee. In the

EMPLOYEE table, we can even select License_Number and Passport_Number as primary keys

since they are also unique.

 For each entity, the primary key selection is based on requirements and developers.

2. Candidate key

 A candidate key is an attribute or set of attributes that can uniquely identify a tuple.

 Except for the primary key, the remaining attributes are considered a candidate key. The

candidate keys are as strong as the primary key.

For example: In the EMPLOYEE table, id is best suited for the primary key. The rest of the

attributes, like SSN, Passport_Number, License_Number, etc., are considered a candidate key.

3. Super Key
Super key is an attribute set that can uniquely identify a tuple. A super key is a superset of a

candidate key.

For example: In the above EMPLOYEE table, for(EMPLOEE_ID, EMPLOYEE_NAME), the name of

two employees can be the same, but their EMPLYEE_ID can't be the same. Hence, this

combination can also be a key.

The super key would be EMPLOYEE-ID (EMPLOYEE_ID, EMPLOYEE-NAME), etc.

4. Foreign key
 Foreign keys are the column of the table used to point to the primary key of another table.

 Every employee works in a specific department in a company, and employee and department

are two different entities. So, we can't store the department's information in the employee

table. That's why we link these two tables through the primary key of one table.

 We add the primary key of the DEPARTMENT table, Department_Id, as a new attribute in the

EMPLOYEE table.

 In the EMPLOYEE table, Department_Id is the foreign key, and both the tables are related.

5. Alternate key
There may be one or more attributes or a combination of attributes that uniquely identify each

tuple in a relation. These attributes or combinations of the attributes are called the candidate

keys. One key is chosen as the primary key from these candidate keys, and the remaining

candidate key, if it exists, is termed the alternate key. In other words, the total number of the

alternate keys is the total number of candidate keys minus the primary key. The alternate key

may or may not exist. If there is only one candidate key in a relation, it does not have an alternate

key.

For example, employee relation has two attributes, Employee_Id and PAN_No, that act as

candidate keys. In this relation, Employee_Id is chosen as the primary key, so the other candidate

key, PAN_No, acts as the Alternate key.

6. Composite key
Whenever a primary key consists of more than one attribute, it is known as a composite key. This

key is also known as Concatenated Key.

For example, in employee relations, we assume that an employee may be assigned multiple

roles, and an employee may work on multiple projects simultaneously. So the primary key will be

composed of all three attributes, namely Emp_ID, Emp_role, and Proj_ID in combination. So

these attributes act as a composite key since the primary key comprises more than one attribute.

7. Artificial key
The key created using arbitrarily assigned data are known as artificial keys. These keys are created

when a primary key is large and complex and has no relationship with many other relations. The

data values of the artificial keys are usually numbered in a serial order.

For example, the primary key, which is composed of Emp_ID, Emp_role, and Proj_ID, is large in

employee relations. So, it would be better to add a new virtual attribute to identify each tuple in

the relation uniquely.

Generalization
 Generalization is like a bottom-up approach in which two or more entities of lower level

combine to form a higher-level entity if they have some attributes in common.

 In generalization, an entity of a higher level can also combine with the entities of the lower

level to form a further higher-level entity.

 Generalization is more like subclass and superclass system, but the only difference is the

approach. Generalization uses the bottom-up approach.

 In generalization, entities are combined to form a more generalized entity, i.e., subclasses are

combined to make a superclass.

For example, Faculty and Student entities can be generalized and create a higher-level entity

Person.

Specialization
 Specialization is a top-down approach, and it is opposite to Generalization. In specialization,

one higher level entity can be broken down into two lower level entities.

 Specialization is used to identify the subset of an entity set that shares some distinguishing

characteristics.

 Normally, the superclass is defined first, the subclass and its related attributes are defined

next, and relationship set are then added.

For example: In an Employee management system, EMPLOYEE entity can be specialized as

TESTER or DEVELOPER based on what role they play in the company.

Aggregation
In aggregation, the relation between two entities is treated as a single entity. In aggregation,

relationship with its corresponding entities is aggregated into a higher-level entity.

For example: Center entity offers the Course entity act as a single entity in the relationship which

is in a relationship with another entity visitor. In the real world, if a visitor visits a coaching center,

then he will never enquiry about the Course only or just about the Center instead he will ask the

enquiry about both.

Relational Algebra
Relational algebra is a procedural query language. It gives a step by step process to obtain the

result of the query. It uses operators to perform queries.

Types of Relational operation

1. Select Operation:

 The select operation selects tuples that satisfy a given predicate.

 It is denoted by sigma (σ).

Notation: σ p(r)

Where:

σ is used for selection prediction

r is used for relation

p is used as a propositional logic formula which may use connectors like: AND OR and NOT. These

relational can use as relational operators like =, ≠, ≥, <, >, ≤.

For example: LOAN Relation

BRANCH_NAME LOAN_NO AMOUNT

Downtown L-17 1000

Redwood L-23 2000

Perryride L-15 1500

Downtown L-14 1500

Mianus L-13 500

Roundhill L-11 900

Perryride L-16 1300

Input:

σ BRANCH_NAME="perryride" (LOAN)

Output:

BRANCH_NAME LOAN_NO AMOUNT

Perryride L-15 1500

Perryride L-16 1300

2. Project Operation:

 This operation shows the list of those attributes that we wish to appear in the result. Rest of

the attributes are eliminated from the table.

 It is denoted by ∏.

Notation: ∏ A1, A2, An (r)

Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

NAME STREET CITY

Jones Main Harrison

Smith North Rye

Hays Main Harrison

Curry North Rye

Johnson Alma Brooklyn

Brooks Senator Brooklyn

Input:

∏ NAME, CITY (CUSTOMER)

Output:

NAME CITY

Jones Harrison

Smith Rye

Hays Harrison

Curry Rye

Johnson Brooklyn

Brooks Brooklyn

3. Union Operation:

 Suppose there are two tuples R and S. The union operation contains all the tuples that are

either in R or S or both in R & S.

 It eliminates the duplicate tuples. It is denoted by ∪.

Notation: R ∪ S

A union operation must hold the following condition:

 R and S must have the attribute of the same number.

 Duplicate tuples are eliminated automatically.

Example:
DEPOSITOR RELATION

CUSTOMER_NAME ACCOUNT_NO

Johnson A-101

Smith A-121

Mayes A-321

Turner A-176

Johnson A-273

Jones A-472

Lindsay A-284

BORROW RELATION

CUSTOMER_NAME LOAN_NO

Jones L-17

Smith L-23

Hayes L-15

Jackson L-14

Curry L-93

Smith L-11

Williams L-17

Input:

∏ CUSTOMER_NAME (BORROW) ∪ ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Johnson

Smith

Hayes

Turner

Jones

Lindsay

Jackson

Curry

Williams

Mayes

4. Set Intersection:

 Suppose there are two tuples R and S. The set intersection operation contains all tuples that

are in both R & S.

 It is denoted by intersection ∩.

Notation: R ∩ S

Example: Using the above DEPOSITOR table and BORROW table

Input:

∏ CUSTOMER_NAME (BORROW) ∩ ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Smith

Jones

5. Set Difference:

 Suppose there are two tuples R and S. The set intersection operation contains all tuples that

are in R but not in S.

 It is denoted by intersection minus (-).

Notation: R - S

Example: Using the above DEPOSITOR table and BORROW table

Input:

∏ CUSTOMER_NAME (BORROW) - ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Jackson

Hayes

Willians

Curry

6. Cartesian product

 The Cartesian product is used to combine each row in one table with each row in the other

table. It is also known as a cross product.

 It is denoted by X.

Notation: E X D

Example:
EMPLOYEE

EMP_ID EMP_NAME EMP_DEPT

1 Smith A

2 Harry C

3 John B

DEPARTMENT

DEPT_NO DEPT_NAME

A Marketing

B Sales

C Legal

Input:

EMPLOYEE X DEPARTMENT

Output:

EMP_ID EMP_NAME EMP_DEPT DEPT_NO DEPT_NAM

E

1 Smith A A Marketing

1 Smith A B Sales

1 Smith A C Legal

2 Harry C A Marketing

2 Harry C B Sales

2 Harry C C Legal

3 John B A Marketing

3 John B B Sales

3 John B C Legal

7. Rename Operation:
The rename operation is used to rename the output relation. It is denoted by rho (ρ).

Example: We can use the rename operator to rename STUDENT relation to STUDENT1.

ρ (STUDENT1, STUDENT)

Join Operations:
A Join operation combines related tuples from different relations, if and only if a given join

condition is satisfied. It is denoted by ⋈.

Example:
EMPLOYEE

EMP_CODE EMP_NAME

101 Stephan

102 Jack

103 Harry

SALARY

EMP_CODE SALARY

101 50000

102 30000

103 25000

Operation: (EMPLOYEE ⋈ SALARY)

Result:

EMP_CODE EMP_NAME SALARY

101 Stephan 50000

102 Jack 30000

103 Harry 25000

Types of Join operations:

1. Natural Join:

 A natural join is the set of tuples of all combinations in R and S that are equal on their common

attribute names.

 It is denoted by ⋈.

Example: Let's use the above EMPLOYEE table and SALARY table:

Input:

∏EMP_NAME, SALARY (EMPLOYEE ⋈ SALARY)

Output:

EMP_NAME SALARY

Stephan 50000

Jack 30000

Harry 25000

2. Outer Join:
The outer join operation is an extension of the join operation. It is used to deal with missing

information.

Example:

EMPLOYEE

EMP_NAME STREET CITY

Ram Civil line Mumbai

Shyam Park street Kolkata

Ravi M.G. Street Delhi

Hari Nehru nagar Hyderabad

FACT_WORKERS

EMP_NAME BRANCH SALARY

Ram Infosys 10000

Shyam Wipro 20000

Kuber HCL 30000

Hari TCS 50000

Input:

(EMPLOYEE ⋈ FACT_WORKERS)

Output:

EMP_NAME STREET CITY BRANCH SALARY

Ram Civil line Mumbai Infosys 10000

Shyam Park street Kolkata Wipro 20000

Hari Nehru nagar Hyderabad TCS 50000

An outer join is basically of three types:

a. Left outer join

b. Right outer join

c. Full outer join

a. Left outer join:

 Left outer join contains the set of tuples of all combinations in R and S that are equal on their

common attribute names.

 In the left outer join, tuples in R have no matching tuples in S.

 It is denoted by ⟕.

Example: Using the above EMPLOYEE table and FACT_WORKERS table

Input:

EMPLOYEE ⟕ FACT_WORKERS

EMP_NAME STREET CITY BRANCH SALARY

Ram Civil line Mumbai Infosys 10000

Shyam Park street Kolkata Wipro 20000

Hari Nehru street Hyderabad TCS 50000

Ravi M.G. Street Delhi NULL NULL

b. Right outer join:

 Right outer join contains the set of tuples of all combinations in R and S that are equal on

their common attribute names.

 In right outer join, tuples in S have no matching tuples in R.

 It is denoted by ⟖.

Example: Using the above EMPLOYEE table and FACT_WORKERS Relation

Input:

EMPLOYEE ⟖ FACT_WORKERS

Output:

EMP_NAME BRANCH SALARY STREET CITY

Ram Infosys 10000 Civil line Mumbai

Shyam Wipro 20000 Park street Kolkata

Hari TCS 50000 Nehru street Hyderabad

Kuber HCL 30000 NULL NULL

c. Full outer join:

 Full outer join is like a left or right join except that it contains all rows from both tables.

 In full outer join, tuples in R that have no matching tuples in S and tuples in S that have no

matching tuples in R in their common attribute name.

 It is denoted by ⟗.

Example: Using the above EMPLOYEE table and FACT_WORKERS table

Input:

EMPLOYEE ⟗ FACT_WORKERS

Output:

EMP_NAME STREET CITY BRANCH SALARY

Ram Civil line Mumbai Infosys 10000

Shyam Park street Kolkata Wipro 20000

Hari Nehru street Hyderabad TCS 50000

Ravi M.G. Street Delhi NULL NULL

Kuber NULL NULL HCL 30000

3. Equi join:
It is also known as an inner join. It is the most common join. It is based on matched data as per

the equality condition. The equi join uses the comparison operator (=).

Example:

CUSTOMER RELATION

CLASS_ID NAME

1 John

2 Harry

3 Jackson

PRODUCT

PRODUCT_ID CITY

1 Delhi

2 Mumbai

3 Noida

Input:

CUSTOMER ⋈ PRODUCT

Output:

CLASS_ID NAME PRODUCT_ID CITY

1 John 1 Delhi

2 Harry 2 Mumbai

3 Harry 3 Noida

Integrity Constraints
 Integrity constraints are a set of rules. It is used to maintain the quality of information.

 Integrity constraints ensure that the data insertion, updating, and other processes have to be

performed in such a way that data integrity is not affected.

 Thus, integrity constraint is used to guard against accidental damage to the database.

Types of Integrity Constraint

1. Domain constraints

 Domain constraints can be defined as the definition of a valid set of values for an attribute.

 The data type of domain includes string, character, integer, time, date, currency, etc. The

value of the attribute must be available in the corresponding domain.

Example:

2. Entity integrity constraints

 The entity integrity constraint states that primary key value can't be null.

 This is because the primary key value is used to identify individual rows in relation and if the

primary key has a null value, then we can't identify those rows.

 A table can contain a null value other than the primary key field.

Example:

3. Referential Integrity Constraints

 A referential integrity constraint is specified between two tables.

 In the Referential integrity constraints, if a foreign key in Table 1 refers to the Primary Key of

Table 2, then every value of the Foreign Key in Table 1 must be null or be available in Table 2.

Example:

4. Key constraints

 Keys are the entity set that is used to identify an entity within its entity set uniquely.

 An entity set can have multiple keys, but out of which one key will be the primary key. A

primary key can contain a unique and null value in the relational table.

Example:

	ER model
	Component of ER Diagram
	Entity:
	Attribute:
	Relationship

	Mapping Constraints:
	One-to-one
	One-to-many
	Many-to-one
	Many-to-many

	Keys:
	Types of keys:
	1. Primary key
	2. Candidate key
	3. Super Key
	4. Foreign key
	5. Alternate key
	6. Composite key
	7. Artificial key

	Generalization
	Specialization
	Aggregation
	Relational Algebra
	Types of Relational operation
	1. Select Operation:
	2. Project Operation:
	3. Union Operation:
	Example:
	4. Set Intersection:
	5. Set Difference:
	6. Cartesian product
	Example: (1)
	7. Rename Operation:

	Join Operations:
	Example:
	Types of Join operations:
	1. Natural Join:
	2. Outer Join:
	a. Left outer join:
	b. Right outer join:
	c. Full outer join:
	3. Equi join:

	Integrity Constraints
	Types of Integrity Constraint
	1. Domain constraints
	2. Entity integrity constraints
	3. Referential Integrity Constraints
	4. Key constraints

